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Abstract 11 

Many wastewater treatment technologies have been shown to remove bacterial pathogens 12 

more effectively than viral pathogens and, in aquatic environments, levels of traditional faecal 13 

indicator bacteria (FIB) do not appear to correlate consistently with levels of human viral 14 

pathogens. There is, therefore, a need for novel viral indicators of faecal pollution and 15 

surrogates of viral pathogens, especially given the increasing importance of indirect and 16 

direct wastewater reuse. Potential candidates include bacteriophages (phages) and the study 17 

described here sought to elucidate the relationship between three groups of phages (somatic 18 

coliphages (SOMPH), F RNA coliphages (F RNAPH) and human-specific phages infecting 19 

B. fragilis (Bf124PH) – enumeration using double layer agar technique) and viral pathogens20 

(human adenovirus (HuAdV) and norovirus (NoV) – enumeration using molecular methods) 21 

through full-scale municipal wastewater treatment processes. FIB (faecal coliforms (FC) and 22 

intestinal enterococci (ENT) – enumeration using membrane filtration) were also monitored. 23 

Samples were collected every fortnight, during a twelve-month period, at each stage of four 24 

full-scale wastewater treatment plants (WWTP) in southern England (two activated sludge 25 
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(AS) and two trickling filter (TF) plants) (n = 360 samples). FIB and SOMPH were 26 

consistently found in all samples tested, whereas F RNAPH, Bf124PH and HuAdV were less 27 

frequently detected, especially following AS treatment. The detection rate of NoV was low 28 

and consequently discussion of this group of viruses is limited. Concentrations of SOMPH 29 

and FIB were statistically higher (p value < 0.05) than concentrations of F RNAPH, Bf124PH 30 

and HuAdV in raw wastewater. FIB were more effectively removed than phages in both 31 

systems. Removal rates of HuAdV were similar to those of phages at the secondary 32 

treatment stage of both systems. In TF systems, HuAdV were removed at the same rate as 33 

F-RNAPH, but at lower rates than SOMPH and Bf124PH. The findings suggest that phages 34 

(in particular SOMPH) are better indicators of the fate of viral pathogens in WWTP than 35 

existing FIB and that these organisms may have a useful role to play in future sanitation 36 

safety planning. 37 

Key words:  human viral pathogens, phages, faecal indicator bacteria, reuse, risk, sanitation 38 

safety planning. 39 

 40 

1. INTRODUCTION 41 

Waters polluted with faecal material may contain a wide variety of viruses originating from 42 

the human gastro-intestinal tract (enteric viruses). It is estimated that over one hundred viral 43 

species of enteric origin are present in municipal wastewaters, many of which are capable of 44 

causing illnesses in humans (Bosch, 1998; Tchobanoglous et al., 2014). Viruses that cause 45 

waterborne diseases include noroviruses (NoV) and human adenoviruses (HuAdV). NoV are 46 

responsible for outbreaks of acute gastroenteritis in children and adults worldwide (Victoria et 47 

al., 2010; Sima et al., 2011; WHO, 2011). Human adenoviruses (HuAdV) can cause a wide 48 

range of diseases, including respiratory, ocular, gastroenteric and other infections (Kuo et al., 49 

2010; Sidhu et al., 2012). 50 
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NoV are small (38-40 nm in diameter) round structured viruses, with a non-enveloped capsid 51 

and a positive single-strand RNA genome (Liu et al., 2007; Victoria et al., 2010). Sima et al. 52 

(2011) have reported that NoV are shed at high titre in faeces during the acute phase of the 53 

infection and for three weeks after symptoms have subsided, reaching concentrations of 1011 54 

viral particles per gramme of faeces (Atmar, 2010). As a consequence, NoV can be detected 55 

in high concentrations in domestic wastewater (van den Berg et al., 2005; Haramoto et al., 56 

2008; Katayama et al., 2008; Eftim et al., 2017). HuAdV are medium-sized (90-100 nm 57 

diameter) viruses, with a non-enveloped capsid and a linear double-stranded DNA genome 58 

(Jiang, 2006; Hewitt et al., 2013). HuAdV are shed in human faeces at concentrations of up 59 

to 1011 viral particles per gramme of faeces (Fields et al., 2007). Thus, their presence is 60 

commonly reported in raw wastewater, final effluents and aquatic environments (Kuo et al., 61 

2010; Hewitt et al., 2011). 62 

As recognised by the UN Sustainable Development Goal 6 Target 3 (UN-Water, 2016), 63 

wastewater reuse makes more water available for drinking and other uses and can reduce 64 

impacts on water-related ecosystems. However, a matter of considerable societal concern is 65 

the potential risk to human health associated with human contact with waterborne pathogenic 66 

microorganisms present in wastewater. More specifically, evidence suggests that waterborne 67 

viral pathogens are inadequately removed from existing wastewater treatment systems and 68 

that bacterial indicators used to assess water quality fail to detect their presence accurately 69 

(USEPA, 2015). 70 

Conventional wastewater treatment technologies were chiefly developed with the aim of 71 

removing organic matter and suspended solids rather than of removing, or inactivating 72 

pathogenic microorganisms (OFWAT/DEFRA, 2006). Although some degree of pathogen 73 

reduction occurs during these treatment processes, they have been shown to be much more 74 

effective at removing bacterial pathogens than viral pathogens, which are smaller in size, 75 

simpler in structure and tend to be more persistent in the environment (Grabow, 2001; Sinton 76 

et al., 2002; Diston et al., 2012). In addition, levels of traditional faecal indicator bacteria 77 
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(FIB) – e.g., Escherichia coli and intestinal enterococci – do not appear to correlate 78 

consistently with levels of human water- and excreta-borne viral pathogens (Baggi et al., 79 

2001; Espinosa et al., 2009; Jurzik et al., 2010; Morens et al., 2010) in treated wastewaters. 80 

In response, bacteriophages (phages), which are viruses capable of infecting bacteria, have 81 

been proposed as potential novel viral indicators (Ebdon et al., 2012; McMinn et al., 2014). 82 

The three groups of phages most commonly used for water quality monitoring are F-specific 83 

and somatic coliphages, as well as phages that infect host-specific Bacteroides spp. 84 

(Grabow, 2001). Phages are considered to be better predictors of human enteric virus 85 

persistence and environmental behaviour than traditional FIB because they have a similar 86 

composition, morphology, structure, size and site of replication (Grabow, 2001; Sinton et al., 87 

2002; Diston et al., 2012). In addition, the incidence and survival of phages in aquatic 88 

environments have also been reported to resemble those of human viruses more closely 89 

than the traditional bacterial indicators commonly used (Lin and Ganesh, 2013). 90 

Furthermore, evidence has shown that phages may be associated with gastrointestinal 91 

illness (Griffith et al., 2016). 92 

Whilst FIB and phages are consistently found in raw and treated municipal wastewater (Kay 93 

et al., 2008; Carducci et al., 2009; Wu et al., 2011; De Luca et al., 2013), the detection of 94 

human enteric viruses tends to vary according to the number of infected individuals in the 95 

population using the sewers, with high detection and/or concentrations in some cases (Aw 96 

and Gin, 2010; Kuo et al., 2010; Wolf et al., 2010; Sidhu et al., 2012) and low detection 97 

and/or concentrations in others (Victoria et al., 2010; Hewitt et al., 2011). In addition, it has 98 

been observed that FIB are more effectively removed than phages (and, more importantly, 99 

viral pathogens) during wastewater treatment (Rose et al., 2004; Ottoson et al., 2006; Ebdon 100 

et al., 2012; Flannery et al., 2012; Purnell et al., 2015; Purnell et al., 2016). Furthermore, 101 

several studies have reported no correlations between levels of pathogens and indicator 102 

organisms in wastewater at various stages of treatment (Rose et al., 2004; Wu et al., 2011; 103 

Flannery et al., 2012). Therefore, further research is needed to evaluate the use of phages 104 
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as indicators of enteric viruses during wastewater treatment. Ideally this research should 105 

enumerate a variety of phage groups, FIB and human enteric viruses in the influent and 106 

effluent of each treatment step of full-scale wastewater treatment facilities and calculate the 107 

log10 removal rates achieved (USEPA, 2015). 108 

A systematic review of the literature on the use of coliphages as potential faecal indicator 109 

organisms that was recently carried out on behalf of the US Environmental Protection 110 

Agency (USEPA) suggested that coliphages are likely to be a better indicator of viruses 111 

within faecal contamination than currently-used FIB (i.e., enterococci and E. coli) and that 112 

these phages may be a better surrogate for specific viruses than FIB in WWTP effluent 113 

(USEPA, 2015). It is within the context of a growing need for more effective faecal indicators 114 

and surrogates that this research was established, with the aim of investigating the 115 

concentrations and removal rates of viral pathogens, phages and FIB at each treatment step 116 

of two of the most widely applied wastewater treatment processes (activated sludge and 117 

trickling filters). The aim of the present study was to investigate whether phages better reflect 118 

the fate of viral pathogens in AS and TF systems than FIB.  119 

 120 

2. MATERIAL & METHODS 121 

2.1. Wastewater treatment sites and samples collection 122 

Four wastewater treatment plants (WWTP) were used to obtain a comprehensive dataset of 123 

wastewater quality parameters to describe treatment operation and efficacy over a period of 124 

twelve continuous months. The four WWTP were located in southern England, UK, and 125 

included secondary biological treatment in the form of activated sludge (AS) and trickling 126 

filters (TF). The two TF treatment plants included ‘settlement ponds’ as a tertiary treatment 127 

step, whereas one AS treatment plant included sand filters as a tertiary treatment step; the 128 

other AS treatment plant did not include any tertiary treatment. The scale of the monitored 129 

WWTP ranged from ‘small’ (5,000 p.e.) to ‘medium’ (45,000 p.e.). Samples were collected 130 

every fortnight from June 2013 to May 2014 (inclusive), resulting in a total of 24 sampling 131 
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occasions and 360 samples. On each sampling occasion, a one-litre volume of each sample 132 

was collected in pre-sterilised (autoclaved at 121ºC for 15 minutes) polyethylene bottles, 133 

stored in cooler boxes at approximately 4ºC and transported to the laboratory for further 134 

analysis within 4 h. At all sites, four different samples were collected on each occasion: (i) 135 

raw wastewater (RW); (ii) primary effluent (immediately after the primary sedimentation 136 

tanks) (PST); (iii) secondary effluent (immediately after the secondary sedimentation tanks) 137 

(SST); and (iv) final effluent (after the tertiary treatment systems) (FE). 138 

 139 

2.2. Enumeration of indicator organisms 140 

Faecal coliforms (FC) and intestinal enterococci (ENT) were enumerated (presumptive 141 

counts) following the protocols described in ISO 9308-1 (BSI, 2009) and ISO 7899-2 (BSI, 142 

2000), respectively. For both bacterial groups, samples were filtered through 0.45 µm 143 

cellulose nitrate membrane filters (Sartorius, Göttingen, Germany) and then incubated on 144 

selective agar at specific temperatures: membrane incubation on M-FC agar (Merck 145 

Millipore, Darmstadt, Germany) at 44±2ºC for 24±2 h for FC; and on Slanetz and Bartley 146 

agar (Merck Millipore, Darmstadt, Germany) at 37±2ºC for 44±2 h for ENT. Concentrations of 147 

FIB were expressed as colony-forming units per 100 mL (cfu.100mL-1). 148 

The three groups of phages commonly used in water quality monitoring were analysed in the 149 

present study and were detected and enumerated as follows: somatic coliphages (SOMPH) 150 

were enumerated according to ISO 10705-2 (BSI, 2001) using the host strain E. coli WG-5; 151 

F-RNA coliphages (F-RNAPH) were enumerated according to 10705-1 (BSI, 2002) using the 152 

host strain S. typhimurium WG-49; and phages infecting B. fragilis (Bf124PH) were 153 

enumerated according to ISO 10705-2 (BSI, 2003) using the host strain B. fragilis GB-124. In 154 

order to increase sensitivity, the method was modified (as described by Vijayavel et al. 155 

(2010)) to process 5 mL rather than 1 mL of secondary effluent (SST) and final effluent (FE) 156 

from the AS systems on the final twelve sampling dates. Concentrations of phages were 157 

expressed as plaque-forming units per 100 mL (pfu.100mL-1). 158 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 159 

2.3. Molecular detection and enumeration of viral pathogens 160 

NoV and HuAdV were chosen as the pathogens of interest in this study because they are 161 

responsible for a range of disease in humans and are commonly found in municipal 162 

wastewater. A description of the methods used for their detection and enumeration is 163 

presented as follows: Once samples had been collected and transferred to the laboratory, a 164 

10-mL volume of each sample, with 5% glycerol (v/v) added, was stored at -20ºC until 165 

processed. In order to increase the sensitivity of the method, this volume was increased to 166 

50 mL, with 5% glycerol (v/v) added, for samples of secondary (SST) and final (FE) effluent 167 

from both AS and TF systems for the final 16 sampling occasions. The elution and 168 

concentration methods used for the preparation of samples prior to the enumeration of viral 169 

pathogens were selected from a range of methods previously tested by Dias (2016). In brief, 170 

before processing, samples were allowed to thaw at 4ºC. The 10 mL samples were 171 

transferred to 50-mL sterile polypropylene centrifuge tubes (Fisherbrand, Loughborough, UK) 172 

and viruses were eluted using 2.5 mL of glycine buffer 2.0 M, pH 9.5 (1:0.25, v/v). The 50 mL 173 

samples were transferred to 100-mL sterile polyethylene containers (Plastiques Gosselin, 174 

Borre, France) and the viruses were eluted using 12.5 mL of glycine buffer 2.0 M, pH 9.5 175 

(1:0.25, v/v). Samples were stirred rapidly in an orbital shaker for 30 min at 300 rpm and then 176 

filtered through 0.22 µm polyethersulfone Millex-GP syringe filter units (Merck Millipore, 177 

Darmstadt, Germany) in order to remove bacteria and other suspended material. 178 

Subsequently, samples were concentrated using Amicon Ultra-15 centrifugal filters units 179 

(50 kDa molecular weight cut-off) (Merck Millipore, Darmstadt, Germany) and centrifuged at 180 

5,000 g at 4ºC for 10 min to obtain a final volume of less than 500 µL. Multiple centrifugation 181 

steps were applied to the 50-mL samples. The final volume was made up to 500 µL with 182 

phosphate buffer solution (PBS) and stored at 4ºC before nucleic acids were extracted. The 183 

preparation methods used were tested for their recovery of SOMPH, and a recovery rate of 184 

21% was recorded. This recovery rate was then used to calculate the concentrations of NoV 185 
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and HuAdV. After the preparation steps, viral DNA and RNA were extracted from samples 186 

using the commercial kits QIAamp Fast DNA Stool Mini Kit and QIAamp Viral RNA Mini Kit 187 

(Qiagen, Hilden, Germany), respectively, according to the manufacturers’ instructions. Both 188 

DNA and RNA extracts were then stored at -80ºC until further processing within six months.  189 

Prior to RT-qPCR assay, samples were allowed to thaw at 4ºC. All qPCR assays were 190 

performed using a Qiagen Rotor-gene Q (Qiagen, Hilden, Germany). ‘’’, ‘no template’ and 191 

‘internal extraction’ controls were used in every assay run. HuAdV RT-qPCR was carried out 192 

by amplifying the hexon gene using the commercial primer and probe set Adenovirus Type F 193 

and G genesig® Advanced Kit (PrimerDesign, Southampton, UK), according to the 194 

manufacturer’s instructions. NoV G1 RT-qPCR was carried out by amplifying the Norovirus 195 

GI capsid protein gene, whereas NoV G2 RT-qPCR was carried out by amplifying Norovirus 196 

GII RNA dependent RNA polymerase gene, both using the commercial primer and probe set 197 

Norovirus Genogroups 1 and 2 genesig® Advanced Kit (PrimerDesign, Southampton, UK), 198 

according to the manufacturer’s instructions. Primers and probes for both HuAdV and NoV 199 

qPCR assays were designed by the manufacturer (PrimerDesign, Southampton, UK). The 200 

primers present 100% homology with all reference sequences included in the NCBI database 201 

and therefore these kits are considered to have very broad detection profiles. For HuAdV, 202 

each sample (5 µL) was prepared with a 15 µL reaction mix, containing 10 µL 203 

PrecisionPLUS™ 2x qPCR MasterMix, 1 µL Adv F+G primer/probe mix, 1 µL internal 204 

extraction control primer/probe mix and 3 µL RNAse/DNAse free water. For NoV G1 and G2 205 

detection, each sample (5 µL) was prepared with a 15 µL reaction mix, containing 10 µL 206 

PrecisionTM OneStep 2x qRT-PCR MasterMix, 1 µL RNA-pol primer/probe mix, 1 µL internal 207 

extraction control primer/probe mix and 3 µL RNAse/DNAse free water. Thermal conditions 208 

for HuAdV consisted of enzyme activation for 2 min at 95ºC, followed by 50 cycles of 209 

denaturation for 10 s at 95ºC and data collection for 60 s at 60ºC. NoV detection followed the 210 

same thermal conditions, with the addition of a prior reverse transcription stage of 10 min at 211 
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42ºC before enzyme activation. No inhibition control was performed. Concentrations of viral 212 

pathogens were expressed as copies per 100 mL (copies.100mL-1). 213 

2.4. Data analysis 214 

For statistical analysis, the data were divided into two groups: one group comprising the data 215 

collected from the two TF plants; and a second group comprising the data collected from the 216 

two AS plants. It is relevant to mention that non-detects were not included in the statistical 217 

analyses performed. The unpaired t-test (ranked t-test) and one-way analysis of variance 218 

(ANOVA on ranks) were applied to the ranked data. The unpaired two-sample t-test was 219 

applied to ranked data in order to compare: (i) AS and TF systems in terms of the 220 

concentrations of the microorganism at each treatment step; (ii) AS and TF systems in terms 221 

of the removal rates of the microorganism at each treatment step. ANOVA on ranks and 222 

Tukey’s statistics were applied to compare the following: (i) the concentrations of 223 

microorganisms (at each treatment step of both AS and TF systems); (ii) the removal rates of 224 

microorganisms (at each treatment step of both AS and TF systems); the removal rates at 225 

the primary, secondary and tertiary treatment steps (for each microorganism in both AS and 226 

TF systems). In addition, the non-parametric Spearman’s rank correlation test was used to 227 

check correlations between concentrations and removal rates of different microorganisms at 228 

different treatment steps of the AS and TF systems. All statistical tests were performed using 229 

a significance level of 5% (α = 0.05) with the aid of Minitab version 17.1.0 (Minitab Inc, 230 

Pennsylvania, USA). 231 

Normalization and statistical analysis of censored data (results below the detection limit) with 232 

zero, or with a proportion of the detection limits (e.g., 1/2 or 1/(√2)) is an approach that has 233 

been widely applied in other studies (McCall et al., 2014; Wangkahad et al., 2016). This 234 

approach has also been applied when dealing with non-detects in real-time quantitative PCR 235 

(qPCR) data (McCall et al., 2014). However, certain issues have been observed when using 236 

such an approach. Firstly, the inclusion of non-detects in datasets has been shown to 237 

produce significant biases in subsequent data analysis (Helsel, 2012; McCall et al., 2014; 238 
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Wangkahad et al., 2016). With regards to qPCR data, although qPCR is one of the most 239 

widely used techniques to measure viral pathogens in water, lack of standardization for 240 

preparation techniques (elution and concentration steps) as well as for the subsequent 241 

molecular detection of pathogens is still problematic (Persing, 2004; USEPA, 2015). In 242 

addition, the possibility of inhibition during the amplification steps is another issue to be 243 

aware of, especially when dealing with wastewater, which typically contains a complex 244 

cocktail of compounds (Hedman and Radstrom, 2013). These issues could, potentially, 245 

adversely alter the qPCR results. Consequently, although the inclusion of censored data 246 

within the dataset may increase the sample size and, consequently, result in more significant 247 

statistical relationships, these results may not necessarily reflect reality. What’s more, the 248 

exclusion of non-detects from subsequent data analysis is likely if anything to result in an 249 

overestimation of the mean concentrations of viral pathogens in the samples, which would be 250 

a more conservative (cautious) approach, as it represents a ‘worst-case’ scenario. As such, 251 

this approach could help to more effectively determine the suitability of bacteriophages as 252 

surrogates of viral pathogens in WWTP. 253 

 254 

3. RESULTS AND DISCUSSION 255 

Table 1 presents detection rates and mean concentrations of the microorganisms studied, 256 

whereas Table 2 presents the removal rates of the microorganisms studied at the primary 257 

(πprim), secondary (πsec) and tertiary (πtert) treatment steps of AS and TF systems. Overall 258 

removal rates (πoverall), which are the total removal rates obtained from all three treatment 259 

steps (primary, secondary and tertiary) combined, were also computed. 260 

 261 

Table 1 – Detection rates and mean ± standard deviation (SD) for the concentrations of all 262 

microorganisms monitored at each treatment step of both types of treatment system 263 

 264 
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Table 2 – Mean ± standard deviation (SD) of removal rates (log10) of all microorganisms 265 

monitored at each treatment step (primary, secondary and tertiary) of both types of treatment 266 

system 267 

 268 

3.1. Detection and quantitation of microorganisms 269 

FIB and SOMPH were detected in 100% of the samples tested, including secondary and 270 

tertiary (final) effluent samples of both AS and TF systems (Table 1). In contrast, whilst 271 

F-RNAPH and Bf124PH were consistently found in samples from TF systems, as well as in 272 

raw wastewater and primary effluent samples from the AS systems, the detection rate of both 273 

groups of phages was lower in SST and FE samples from AS systems. 274 

High detection rates (> 80%) for FIB and SOMPH have been reported in the literature (Kay et 275 

al., 2008; Carducci et al., 2009; Wu et al., 2011; De Luca et al., 2013). Despite the high 276 

removal rates of FC (6.8 log10) and SOMPH (5.3 log10) in a MBR system in the UK, Purnell et 277 

al. (2015; 2016) reported the occasional presence of FIB and SOMPH in the MBR product. 278 

Bacteroides spp. phages, which were consistently detected in the raw wastewater of this 279 

study, have also consistently been detected in raw municipal wastewater in previous studies 280 

in the UK (Ebdon et al., 2012; Purnell et al., 2015; Purnell et al., 2016) and in Austria (Mayer 281 

et al., 2016). Purnell et al. (2015) detected both F-RNAPH and Bf124PH in all raw 282 

wastewater samples analysed, but did not detect them in MBR product. It is then perhaps not 283 

surprising that in this study, given that AS systems were shown to remove phages more 284 

effectively than TF systems, that the detection rates of F-RNAPH and Bf124 were lower in 285 

the AS effluents. 286 

With regard to viral pathogens, the detection rate of HuAdV was considerably lower in all 287 

cases when compared with FIB and phages. In AS systems, the detection rate of HuAdV 288 

decreased gradually through the treatment process: 56.3% in RW, 55.3% in PST, 23.9% in 289 

SST and 8.7% in FE samples (Table 1). Conversely, in TF systems the detection rate of 290 
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HuAdV ranged between 46.8% and 55.3% in RW, PST and SST samples, and in FE 291 

samples the detection rate was slightly higher (72.9%) (Table 1). The detection rate of NoV 292 

G1 and NoV G2 was lower than 20% in all treatment steps of both AS and TF systems. As a 293 

consequence of the low detection rate, discussion of the results for both NoV G1 and NoV 294 

G2 is necessarily limited. 295 

Other studies reported that HuAdV have been consistently (>80%) detected in both raw 296 

wastewater and final effluent (Aw and Gin, 2010; Kuo et al., 2010; Wolf et al., 2010; Hewitt et 297 

al., 2011; Hewitt et al., 2013; Mayer et al., 2016). However, Ebdon et al. (2012) reported a 298 

similar detection rate of HuAdV to this study in UK raw municipal wastewater (58%), and that 299 

the detection rate was observed to reduce through the treatment processes. The detection 300 

rate of NoV G1 and NoV G2 in raw wastewater varies considerably according to other 301 

studies: below 10% in Brazil (Victoria et al., 2010), between 40 and 80% in New Zealand 302 

(Hewitt et al., 2011), to above 80% also in New Zealand (Wolf et al., 2010).  303 

Recently, much effort has been expended on the development of molecular techniques to 304 

detect and quantify viral pathogens (Heim et al., 2003; Choi and Jiang, 2005; Jothikumar et 305 

al., 2005; Trujillo et al., 2006; Le Guyader et al., 2009; Wolf et al., 2010; Sidhu et al., 2012). 306 

Although availability and affordability of molecular methods (i.e., RT-qPCR) for the detection 307 

and enumeration of human enteric viruses have increased in recent years, it is important to 308 

state that molecular techniques present issues associated with levels of detection 309 

(sensitivity), infectivity of viruses, complexity, timeliness and costs of analytical methods. In 310 

addition, lack of standardisation for sample preparation (elution and concentration methods) 311 

and molecular techniques are also problematic (Persing, 2004; USEPA, 2015). Furthermore, 312 

RT-qPCR methods may also present inhibition of the amplification steps because of the 313 

presence of certain substances, especially when analysing wastewater samples (Hedman 314 

and Radstrom, 2013). Therefore, the issues associated with molecular methods may explain 315 

the variations observed in detection rates for viral pathogens in the present study, especially 316 

for NoV. 317 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

In both AS and TF systems, the concentration in RW samples of FC (6.6-6.7 log10 318 

cfu.100mL-1) was significantly higher than the levels of ENT (5.8 log10 cfu.100mL-1) and 319 

SOMPH (5.9-6.1 log10 pfu.100mL-1), followed by HuAdV (4.4-4.5 log10 copies.100mL-1), and 320 

then Bf124PH and F-RNAPH (3.5-3.8 and 3.2-3.3 log10 pfu.100mL-1, respectively) (ANOVA 321 

on ranks; p-value < 0.0001). Mean levels of NoV G1 and G2 in RW samples ranged from 3.4 322 

to 4.7 log10 copies.100mL-1.  323 

Similar concentrations of FIB in municipal raw wastewater are reported in the literature 324 

related to studies performed in the UK (Kay et al., 2008; Purnell et al., 2015; 2016) and in 325 

Italy (Carducci et al., 2009; De Luca et al., 2013). In contrast, the levels of phages observed 326 

in RW samples in this study were about 1.0 log10 lower than those reported by Purnell et al. 327 

(2015) elsewhere in the UK; Aw and Gin (2010) also reported greater concentrations of 328 

F-RNAPH in RW in a study performed in Singapore, and the levels found by De Luca et al. 329 

(2013) in Italy were considerably higher (8.5 log10 pfu.100mL-1). Similar concentrations of 330 

SOMPH and Bacteroides spp. phages in untreated wastewater to those reported here were 331 

observed by Aw and Gin (2010) in Singapore and Ebdon et al. (2007) in the UK, respectively. 332 

The concentrations of HuAdV observed here in raw wastewater were similar to those 333 

reported in studies performed in Singapore (Aw and Gin, 2010) and in New Zealand (Hewitt 334 

et al., 2011), but were lower than the levels reported by other studies performed in other 335 

parts of the world: Italy (Carducci et al., 2009); USA (Kuo et al., 2010); Australia (Sidhu et al., 336 

2012); and New Zealand (Wolf et al., 2010; Hewitt et al., 2013). Similar concentrations of 337 

NoV G1 and G2 in untreated wastewater to those reported here are also reported in the 338 

literature: New Zealand (Hewitt et al., 2011); and Ireland (Flannery et al., 2012). From the 339 

results obtained from this study and the literature, it appears that SOMPH and FIB are the 340 

investigated indicator organisms detected at the highest concentrations in raw wastewater, at 341 

levels higher than those observed for HuAdV. In contrast, it has been reported that F-RNAPH 342 

and Bf124PH are detected in raw wastewater at concentrations lower than those of SOMPH 343 

and FIB, and relatively similar to those of HuAdV (Purnell et al., 2016). 344 
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3.2. WWTP performance 345 

Although AS and TF treatment systems are not designed with the aim of removing 346 

pathogens, some reduction in the concentrations of viral pathogens and indicator organisms 347 

were observed through the systems. The results indicate that the AS system are significantly 348 

more effective than TF systems at removing FIB and phages (ranked t-test; p-value ≤ 0.005 349 

for πoverall). In addition, in both AS and TF systems, the secondary (biological) treatment 350 

stage presented higher removal rates of microorganisms than the primary and tertiary 351 

treatment steps (ANOVA on ranks; p-value < 0.0001). This is highly likely to be the result of 352 

the contrasting underlying mechanisms that underpin the treatment systems: adsorption of 353 

particles onto the biofilm attached to the inert packing medium and subsequent predation by 354 

other microorganisms, such as bacteria, protozoa and rotifera in TF systems (Strauss, no 355 

date); whereas in AS systems, in addition to predation, particles become attached to the 356 

biological floc and consequently transfer to the sludge during settlement (Zhang and 357 

Farahbakhsh, 2007; Kuo et al., 2010). Therefore, the removal of enteric microorganisms may 358 

be expected to be higher in AS systems, compared with TF systems. 359 

In terms of tertiary treatment, settlement ponds (following TF systems) and sand filters 360 

(following AS systems) were shown to be equally effective at removing the microorganism 361 

monitored. In general, the tertiary treatment processes contributed to limited removal of 362 

viruses and bacteria, with recorded mean removal rates that were lower than 0.60 log10 363 

(Table 1), which is considerably lower than that recorded for other tertiary treatment 364 

techniques commonly applied, such as chlorination.  365 

AS systems appear to be capable of producing final effluents of significantly higher quality 366 

than TF systems (in terms of concentrations of enteric microorganisms), as can be seen in 367 

Table 1. In this study similar concentrations of HuAdV (Aw and Gin, 2010; Kuo et al., 2010; 368 

Hewitt et al., 2011), SOMPH (De Luca et al., 2013) and F-RNAPH (Aw and Gin, 2010) in AS 369 

secondary effluents to those reported in the literature, whereas higher concentrations have 370 

been observed in the literature for FIB (Kay et al., 2008; Flannery et al., 2012; De Luca et al., 371 
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2013) and F-RNAPH (Flannery et al., 2012). Considerably lower concentrations of indicator 372 

organisms have been reported in MBR product (De Luca et al., 2013; Purnell et al., 2015). 373 

With regard to effluents of TF systems, similar levels of FIB and phages to those recorded in 374 

this study were reported by Kay et al. (2008) and Ebdon et al. (2012). 375 

When primary and secondary treatment steps are considered together, similar removal rates 376 

for HuAdV are observed to those for the three groups of phages, which were considerably 377 

lower than those observed for FIB (Table 2). With regard to overall removal rates, both AS 378 

and TF systems removed FIB significantly more effectively than they removed phages, and 379 

the removal rates of HuAdV and the three groups of phages were statistically the same 380 

(ANOVA on ranks; p-value < 0.0001). An ‘ideal indicator’ should demonstrate similar survival 381 

characteristics to the pathogens in wastewater treatment processes (UKEA, 2002), and, in 382 

this study, the removal of phages appeared to indicate the removal of viral pathogens better 383 

than the removal of FIB. 384 

 385 

3.3. Correlations between levels of microorganisms 386 

Spearman's rank correlation coefficients (rho) between the log10 concentrations of 387 

microorganisms were obtained at each treatment step of the AS and TF systems. Overall, in 388 

both AS and TF systems, it was observed that concentrations of indicator organisms (FIB 389 

and phages) were significantly correlated in raw and treated wastewater samples (p-390 

values < 0.05), with moderate rho values (0.3 to 0.7). In terms of viral pathogens, the only 391 

significant correlation observed in AS systems was between the concentrations of HuAdV 392 

and Bf124PH in untreated wastewater (rho = 0.506, p-value = 0.007), whereas the levels of 393 

HuAdV did not correlate with the concentrations of any other microorganisms in any of the 394 

treatment steps of the TF systems. 395 

In a studied performed in Singapore, Aw and Gin (2010) observed significant correlations 396 

between levels of SOMPH and HuAdV, and between levels of F-RNAPH and NoV G2 in raw 397 
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wastewater samples. However, in general, it has been reported in the literature that indicator 398 

organisms tend to correlate positively with each other in wastewaters, treated wastewaters 399 

and other aquatic matrices, but little or no correlation between concentrations of indicator 400 

organisms and viral pathogens has been reported in untreated and treated wastewater (Rose 401 

et al., 2004; Ottoson et al., 2006; Carducci et al., 2009; Flannery et al., 2012).. Despite the 402 

fact that no correlations between concentrations of enteric viruses and coliphages were 403 

observed by Rose et al. (2004) in the US, these authors suggest that the presence or 404 

absence of enteric viruses can be predicted by monitoring levels of SOMPH. In a study 405 

based on statistical analysis of papers published over a period of 40 years, Wu et al. (2011) 406 

suggested that total coliforms, coliphages and F-specific coliphages are among the 407 

commonly monitored enteric microorganisms that are more likely to correlate positively with 408 

pathogens. These authors also suggest that, although no single organism (or group of 409 

organisms) can indicate the presence of all pathogens in waters, over the longer term and if 410 

the dataset is large enough, FIB and other indicators (i.e., phages) can reliably predict the 411 

presence of pathogens. 412 

 413 

3.4. Novel indicators 414 

Figure 1presents concentrations and cumulative removal rates of the FIB (FC and ENT 415 

datasets combined), phages (SOMPH, F-RNAPH and Bf124PH datasets combined) and viral 416 

pathogens (HuAdV dataset) at each treatment step of the AS (Figure 1.A) and TF (Figure 417 

1.B) systems in order to compare the removal of the studied microorganisms through such 418 

systems. In AS systems, the recorded removal rates of phages and HAdv were very similar 419 

in the primary and secondary treatment steps, both being lower than the removal rates of FIB 420 

(Figure 1.A). In TF systems, the removal rates of FIB, phages and HuAdV in the primary 421 

treatment step were very similar to one another; removal rates of phages and HAdv were 422 

very similar in the secondary treatment step, both being lower than the removal rates of FIB 423 
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(Figure 1.B). In the tertiary treatment step of both AS and TF systems, the recorded removal 424 

of FIB was higher than that of phages, followed by HAdv (Figure 1). 425 

Figure 1 – Concentrations and cumulative removal rates of FIB, phages and viral pathogens 426 

at each treatment step of AS (A) and TF (B) systems. 427 

RW= raw wastewater; PST = primary effluent samples; SST = secondary effluent samples; FE = final 428 

effluent; Rem =removal. 429 

 430 

Figure 2 presents concentrations and cumulative removal rates of SOMPH, F-RNAPH, 431 

Bf124PH and HuAdV at each treatment step of the AS (Figure 2.A) and TF (Figure 2.B) 432 

systems. The removal rates of the three groups of phages and HuAdV within primary 433 

treatment steps were similar to one another in AS systems; in the secondary treatment step, 434 

phages demonstrated removal rates 1.0 log10 greater than HuAdV; HuAdV, SOMPH and 435 

F-RNAPH demonstrated similar overall removal rates (Figure 2). Levels of SOMPH, 436 

F-RNAPH and Bf124PH respectively most closely predicted the removal of HuAdV in 437 

primary, secondary and tertiary treatment steps of TF systems (Figure 2). 438 

 439 

Figure 2 – Concentrations and cumulative removal rates of SOMPH, F-RNAPH, Bf124PH 440 

and HuAdV at each treatment step of AS (A) and TF (B) systems. 441 

SOMPH = somatic coliphages; F-RNAPH = F-RNA coliphages; Bf124PH = B. fragilis phages; HuAdV 442 

= Human Adenovirus Types F & G; RW= raw wastewater; PST = primary effluent samples; SST = 443 

secondary effluent samples; FE = final effluent; Rem = removal 444 

 445 

In conclusion, FIB were more effectively removed than phages and viral pathogens in the 446 

treatment systems studied, and, since HuAdV and phages were removed at similar rates, it 447 

appears that phages may better indicate the removal of human viral pathogens in 448 

wastewater treatment processes than FIB. In addition, SOMPH were consistently found in 449 

raw and treated wastewater, whilst F-RNAPH and Bf124PH were not detected in several 450 
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treated effluent samples collected from AS systems. Furthermore, SOMPH were recorded at 451 

higher levels, both in comparison with the other phage groups and HuAdV in all treatment 452 

steps of the WWTP. Therefore, the results suggest that, of the groups of indicator organisms 453 

that are widely used (and, more specifically, of the phage groups currently used), SOMPH 454 

appears to be the parameter that best indicates the removal of viral pathogens in AS and TF 455 

systems. It is important to stress, however, that no significant correlations were observed 456 

between any of the levels and log10 removal rates of viral pathogens and indicator 457 

organisms. 458 

 459 

4. CONCLUSIONS 460 

The principal conclusions and outputs of this study are as follows: 461 

• AS systems were shown to be more effective than TF at removing viral pathogens, 462 

traditional FIB and phages. 463 

• In both AS and TF systems, FIB were shown to be more readily removed than 464 

phages and viral pathogens. In addition, removal rates of phages were shown to be 465 

similar to those of HuAdV. 466 

• It was observed that, whilst indicator organisms correlated positively with one 467 

another, they did not appear to correlate with the presence of viral pathogens. 468 

• The results suggest that phages are more useful for indicating the removal of viral 469 

pathogens in AS and TF systems than FIB. 470 
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No. samples (%) No. samples (%)

RW 48/48 (100%) 6.63±0.64 48/48 (100%) 6.70±0.55

PST 47/47 (100%) 6.31±0.57 48/48 (100%) 6.52±0.45

SST 48/48 (100%) 4.10±0.58 46/46 (100%) 5.04±0.29

FE 22/22 (100%) 3.17±0.60 45/45 (100%) 4.43±0.52

RW 47/47 (100%) 5.80±0.42 48/48 (100%) 5.84±0.55

PST 47/47 (100%) 4.91±1.05 47/47 (100%) 5.67±0.30

SST 47/47 (100%) 3.26±0.49 45/45 (100%) 3.89±0.34

FE 22/22 (100%) 2.61±0.46 48/48 (100%) 3.46±0.63

RW 48/48 (100%) 5.94±0.52 48/48 (100%) 6.05±0.51

PST 46/46 (100%) 5.65±0.50 46/46 (100%) 5.94±0.45

SST 47/47 (100%) 3.85±0.39 48/48 (100%) 5.42±0.47

FE 22/22 (100%) 3.45±0.42 48/48 (100%) 5.20±0.45

RW 44/45 (97.8%) 3.33±0.85 45/46 (97.8%) 3.23±0.89

PST 41/46 (89.1%) 3.11±0.92 47/48 (97.9%) 3.27±0.87

SST 22/48 (45.8%) 1.91±0.69 46/47 (97.9%) 3.17±0.63

FE 5/23 (21.7%) 1.88±0.27 48/48 (100%) 3.01±0.59

RW 44/44 (100%) 3.52±0.82 45/47 (95.7%) 3.81±0.67

PST 44/47 (93.6%) 3.36±0.84 47/47 (100%) 3.84±0.73

SST 35/48 (72.9%) 1.79±0.72 46/47 (97.9%) 3.36±0.78

FE 9/23 (39.1%) 1.81±0.70 44/47 (93.6%) 3.16±0.76

RW 27/48 (56.3%) 4.52±0.85 22/47 (46.8%) 4.42±1.32

PST 26/47 (55.3%) 4.39±0.72 24/47 (51.1%) 4.43±0.70

SST 11/46 (23.9%) 3.01±0.91 26/47 (55.3%) 3.97±0.78

FE 2/23 (8.7%) 2.34±0.73 35/48 (72.9%) 4.09±0.96

RW 5/45 (11.1%) 3.37±1.42 5/44 (11.4%) 3.41±1.50

PST 1/46 (2.2%) 2.03±* 4/46 (8.7%) 3.11±1.03

SST 1/46 (2.2%) 4.38±* 5/48 (10.4%) 1.44±0.72

FE 4/22 (18.2%) 4.60±2.45 5/46 (10.9%) 1.84±0.61

RW 6/46 (13.0%) 3.51±2.16 10/47 (21.3%) 4.72±1.71

PST 8/47 (17.0%) 3.65±1.75 5/48 (10.4%) 5.20±1.69

SST 4/47 (8.5%) 4.54±1.08 8/46 (17.4%) 2.64±1.25

FE 1/46 (2.2%) 5.87±* 7/48 (14.6%) 2.19±0.78

Table 1 – Detection rates and mean ± standard deviation (SD) for the concentrations
of all microorganisms monitored at each treatment step of both types of treatment
system.

Org. Sample
Activated sludge Trickling filter 

Mean±SD Mean±SD

N
oV

 G
1

N
oV

 G
2

FC = faecal coliforms; ENT = intestinal enterococci; SOMPH = somatic coliphages; F‑RNAPH = F-RNA
coliphages; Bf124PH = B. fragilis phages; HuAdV = Human Adenovirus Types F & G; Nv G1 =
noroviruses genogroup 1; NoV G2 = noroviruses genogroup 2; RW= raw wastewater; PST = primary
effluent samples; SST = secondary effluent samples; FE = final effluent.

* Not calculated because of insufficient data.
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Activated sludge Trickling filter
Mean±SD Mean±SD

πprim 0.33±0.61 0.18±0.33
πsec 2.21±0.68 1.47±0.36
πtert 0.58±0.31 0.58±0.54
πoverall 3.59±0.69 2.26±0.87
πprim 0.85±0.92 0.16±0.55
πsec 1.64±0.95 1.77±0.41
πtert 0.39±0.43 0.42±0.49
πoverall 3.10±0.71 2.38±1.02
πprim 0.33±0.44 0.10±0.41
πsec 1.77±0.46 0.54±0.35
πtert 0.26±0.30 0.21±0.25
πoverall 2.42±0.69 0.84±0.42
πprim 0.33±0.57 0.01±0.45
πsec 1.60±0.72 0.07±0.57
πtert 0.39±0.44 0.16±0.36
πoverall 2.26±0.82 0.23±0.75
πprim 0.27±0.63 -0.09±0.53
πsec 1.75±0.64 0.52±0.43
πtert 0.08±0.35 0.19±0.37
πoverall 2.00±1.19 0.60±0.69
πprim 0.13±0.84 0.15±1.29
πsec 1.65±0.92 0.37±0.62
πtert * -0.27±1.05
πoverall * 0.17±1.07

SOMPH

Table 2 – Mean ± standard deviation (SD) of removal rates (log10) of all
microorganisms monitored at each treatment step (primary, secondary and tertiary) of
both types of treatment system.

Org. Treatment step

FC

ENT

F‑‑‑‑RNAPH

Bf124PH

HuAdV

FC = faecal coliforms; ENT = intestinal enterococci; SOMPH = somatic coliphages; F RNAPH = F-RNA
coliphages; Bf124PH = B. fragilis phages; HuAdV = Human Adenovirus Types F & G; πprim = efficacy of
preliminary and primary treatment; πsec = efficacy of secondary treatment; πtert = efficacy of tertiary
treatment; πoverall = overall efficacy.

* Not calculated because of insufficient data.
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February 25th, 2017 

 

To the Editors of Water Research 

 

Submission of a new manuscript 

 

Please find attached our submission of a manuscript entitled: Bacteriophages as surrogates of 
viral pathogens in wastewater treatment systems. Authors: Dr. Edgard Dias; Dr. James Ebdon; 
and Prof. Huw Taylor. 

 

Highlights: 

 

• FIB were more readily removed than phages and viral pathogens in all WWTP monitored 

• Removal rates of phages were shown to be similar to those of human adenovirus 

• Phages likely to better indicate the removal of viral pathogens in WWTP than FIB 

• Phages as surrogates of viral pathogens in WWTP may support safe wastewater reuse 

 

We look forward to hearing from you. 

 

Yours sincerely, 

 

Dr. Edgard Dias 
Dep. Sanitary and Environmental Engineering 
Federal University of Juiz de Fora 




